
Break statement(break)

Sometimes it becomes necessary to come out of the loop even before loop

condition becomes false then break statement is used. Break statement is

used inside loop and switch statements. It cause immediate exit from that loop

in which it appears and it is generally written with condition. It is written with the

keyword as break. When break statement is encountered loop is terminated

and control is transferred to the statement, immediately after loop or situation

where we want to jump out of the loop instantly without waiting to get back to

conditional state.

When break is encountered inside any loop, control automatically passes to

the first statement after the loop. This break statement is usually associated

with if statement.

Example :

void main()

{

int j=0;

for(;j<6;j++)

if(j==4) break;

}

Output:

0 1 2 3

Continue Statement:

Continue statement is used for continuing next iteration of loop after skipping

some statement of loop. When it encountered control automatically passes

through the beginning of the loop. It is usually associated with the if statement.

It is useful when we want to continue the program without executing any part of

the program.

The difference between break and continue is, when the break encountered

loop is terminated and it transfer to the next statement and when continue is

encounter control come back to the beginning position.

In while and do while loop after continue statement control transfer to the test

condition and then loop continue where as in, for loop after continue control

transferred to the updating expression and condition is tested.

Example:- void

main()

{

int n;

for(n=2; n<=9; n++)

{

if(n==4) continue;

printf(“%d”, n);

}

}

Printf(“out of loop”);

}

Output: 2 3 5 6 7 8 9 out of loop

SWITCH STATEMENT:
A switch statement allows a variable to be tested for equality against a list of values.

Each value is called a case, and the variable being switched on is checked for

each switch case.

Syntax
The syntax for a switch statement in C programming language is as follows −

switch(expression) {

 case constant-expression :
 statement(s);
 break; /* optional */

 case constant-expression :
 statement(s);
 break; /* optional */

 /* you can have any number of case statements */
 default : /* Optional */
 statement(s);
}

The following rules apply to a switch statement −

 The expression used in a switch statement must have an integral or enumerated type, or

be of a class type in which the class has a single conversion function to an integral or

enumerated type.

 You can have any number of case statements within a switch. Each case is followed by

the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable in the

switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following that

case will execute until a break statement is reached.

 When a break statement is reached, the switch terminates, and the flow of control jumps

to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall

through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of

the switch. The default case can be used for performing a task when none of the cases is

true. No break is needed in the default case.

Flow Diagram

Example

#include <stdio.h>

int main () {

 /* local variable definition */
 char grade = 'B';

 switch(grade) {
 case 'A' :
 printf("Excellent!\n");
 break;
 case 'B' :
 case 'C' :
 printf("Well done\n");
 break;
 case 'D' :
 printf("You passed\n");
 break;
 case 'F' :
 printf("Better try again\n");
 break;
 default :
 printf("Invalid grade\n");
 }

 printf("Your grade is %c\n", grade);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Well done
Your grade is B

C – else..if statement

The else..if statement is useful when you need to check multiple conditions within the

program, nesting of if-else blocks can be avoided using else..if statement.

Syntax of else..if statement:

if (condition1)
{
 //These statements would execute if the condition1 is true
}
else if(condition2)
{
 //These statements would execute if the condition2 is true
}
else if (condition3)
{
 //These statements would execute if the condition3 is true
}
.
.
else
{
 //These statements would execute if all the conditions return false.
}

Example of else..if statement

Lets take the same example that we have seen above while discussing nested if..else. We will

rewrite the same program using else..if statements.

#include <stdio.h>
int main()
{
 int var1, var2;
 printf("Input the value of var1:");
 scanf("%d", &var1);
 printf("Input the value of var2:");
 scanf("%d",&var2);
 if (var1 !=var2)
 {
 printf("var1 is not equal to var2\n");
 }
 else if (var1 > var2)
 {
 printf("var1 is greater than var2\n");

 }
 else if (var2 > var1)
 {
 printf("var2 is greater than var1\n");
 }
 else
 {
 printf("var1 is equal to var2\n");
 }
 return 0;
}

Output:

Input the value of var1:12
Input the value of var2:21
var1 is not equal to var2

As you can see that only the statements inside the body of “if” are executed. This is because

in this statement as soon as a condition is satisfied, the statements inside that block are

executed and rest of the blocks are ignored.

C goto Statement

The goto statement allows us to transfer control of the program to the

specified label.

Syntax of goto Statement

goto label;

...

...

label:

statement;

The label is an identifier. When the goto statement is encountered, the control of the

program jumps to label: and starts executing the code.

Working of goto Statement

	Break statement(break)
	Syntax
	Flow Diagram
	Example
	C – else..if statement
	Example of else..if statement

	C goto Statement
	Syntax of goto Statement

